Energy flux measurement from the dissipated energy in capillary wave turbulence.

نویسندگان

  • Luc Deike
  • Michael Berhanu
  • Eric Falcon
چکیده

We study experimentally the influence of dissipation on stationary capillary wave turbulence on the surface of a liquid by changing its viscosity. We observe that the frequency power-law scaling of the capillary spectrum departs significantly from its theoretical value when the dissipation is increased. The energy dissipated by capillary waves is also measured and found to increase nonlinearly with the mean power injected within the liquid. Here we propose an experimental estimation of the energy flux at every scale of the capillary cascade. The latter is found to be nonconstant through the scales. For fluids of low enough viscosity, we found that both capillary spectrum scalings with the frequency and the newly defined mean energy flux are in good agreement with wave turbulence theory. The Kolmogorov-Zakharov constant is then experimentally estimated and compared to its theoretical value.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Direct numerical simulations of capillary wave turbulence.

This work presents direct numerical simulations of capillary wave turbulence solving the full three-dimensional Navier-Stokes equations of a two-phase flow. When the interface is locally forced at large scales, a statistical stationary state appears after few forcing periods. Smaller wave scales are generated by nonlinear interactions, and the wave height spectrum is found to obey a power law i...

متن کامل

Observation of gravity-capillary wave turbulence.

We report the observation of the crossover between gravity and capillary wave turbulence on the surface of mercury. The probability density functions of the turbulent wave height are found to be asymmetric and thus non-Gaussian. The surface wave height displays power-law spectra in both regimes. In the capillary region, the exponent is in fair agreement with weak turbulence theory. In the gravi...

متن کامل

Single-wave-number representation of nonlinear energy spectrum in elastic-wave turbulence of the Föppl-von Kármán equation: energy decomposition analysis and energy budget.

A single-wave-number representation of a nonlinear energy spectrum, i.e., a stretching-energy spectrum, is found in elastic-wave turbulence governed by the Föppl-von Kármán (FvK) equation. The representation enables energy decomposition analysis in the wave-number space and analytical expressions of detailed energy budgets in the nonlinear interactions. We numerically solved the FvK equation an...

متن کامل

On the Fraction of Internal Tide Energy Dissipated Near Topography

Internal tides have been implicated as a major source of mechanical energy for mixing in the ocean interior. Indeed, microstructure and tracer measurements have indicated that enhanced turbulence levels occur near topography where internal tides are generated. However, the details of the energy budget and the mechanisms by which energy is transferred from the internal tide to turbulence have be...

متن کامل

Fluctuations of energy flux in wave turbulence.

We report that the power driving gravity and capillary wave turbulence in a statistically stationary regime displays fluctuations much stronger than its mean value. We show that its probability density function (PDF) has a most probable value close to zero and involves two asymmetric roughly exponential tails. We understand the qualitative features of the PDF using a simple Langevin-type model.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 89 2  شماره 

صفحات  -

تاریخ انتشار 2014